AD-A076 511 COLORADO UNIV BOULDER DEPT OF COMPUTER SCIENCE F/6 972 j\
A STUDY OF ERRORS CAUSED BY TRANSCRIPTION MISTAKES IN FORTRAN P==ETC(U)
AUG 79 L D FOSDICK DAAG29=T78=6=0046

UNCLASSIFIED
| o |

AD
AO7B5 |

CU=CS=146=T79 ARO=15074,10~M NL '

END
DATE
FILMED
I2-79
DDC

/507¢ 10-/M\

UNIVERSITY OF COLORADO

-~

ADACT6511

DEPARTMENT OF COMPUTER SCIENCE i

X

DOC FiLE copY.

Technical Report

' This document has been “PPw"Ed -
' for public relecwe and salo; 18 i
’ distribution is unlimited. ;

L et T M o PR T

[\ A STUDY OF ERRORS {,AUSED BY TRANSCRIPTION | ;
N MISTARES IN FORTRAN PROGRAMS .

by
L. D./Fosdick
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

Y CU-CS-146-79 . August, 1979
\ /l a < / -

/| INTERIM TECHNICAL REPORT .

U.S. ARMY RESEARCH OFFICE N2L7Y
CONTRA -/DAAG29-78-G-p046 -

o S
-

F
-

p—

[l |

Approved for public release
Distribution Unlimited

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION, UNLESS SO DESIG-
NATED BY OTHER AUTHORIZED DOCUMENTS. 3

We acknowledge U.S. Army Research support
under contract no. DAAG29-78-G-0046 and
National Science Foundation support under
grant no. MCS77-02194

SECURITY CLASSIFICATION OF THIS PAGE 'When Dara Entered)

)| RFAD INSTRU
REPORT DOCUMENTATION PAGE o KA Ot COMBT L T o
7. REPORY NUMBER 2. 30VY ACCESSION &.’uT: RECIPIENT'S CATALOG NUMBER
. X |
CU-CS-146-79 s | ;
4 YITLE (and Subtitle) ey ._Ts ';-:t-‘:' REPORT & PERION COUVERED
“A Study of Errors Caused by Transcription i
Mistakes in Fortran Programs"” |
/ 6 PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) . I CONTRACT GR GRANT NUMBER(e)
: DAAG29-78-G-0046
« F
Jos 1 Fondreh MCS77-02194 (NFS)

9 PLRFORMING ORGANIZATION NAME AND ADDRESS 0 F;:(()ill:: taLEu(u T.PROJECT, TASK
Dept. of Compter Science] 6 oo i
University of Colorado at Boulder e
Boulder, Colorado 80309 |

1\, CONTROLLING QFFICE NAME AND ADDRESS Tl 12 REPORTY DATE Bt

U. . Army Heseawrch Otfice August 1979
Post SUiee e ERIEL 13. NUMBER OF PAGES
Reseurat Trisgeie Packs NS ST T09

t MONITORING AGENCY NAME & ADORESS(/! dllferent from Controlling Uil e) | 1S SECURITY CLASS. (of (hie reporf)

Thns dokt Sz)8

186 OFECLASSIFICATION/ DOWNGRADING
SCHEOULE
\r
NA

DD ,"0n%; 1473 €oiTion oF 1 NOV 88 1S OBSOLETE

16 CISTRIBUYT.ON STATEMENT (of thie Keporr)
Approvea for public release; aistrilutioa ar.imited,
17. DISTRIBUYION STATEMENT (of the adetract entered In Bloch 20, Il Jilterant (rom Report)
NA
18 SUPPLEMENTARY NOTES
S Cindings in this report are not te Lo ¢ s curved as an official
Departrent of the Army position, urniecs v e ivnated by other authorized
% {16 Tog Pl ot S8R '
19 KEY WORDS (Continue on reverse alde Il necessary and Identily by block numher)
software reliability, keypunch errors, error detection
20 AGSTRACT (Continue on reverse side |l neceseary and identily M. ' 'ock number)

7 Transcription mistakes which are not caught in proof-reading must

be caught by observation of phenomena, such as syntax errors or wrong
results, caused by them. Here we explore the nature and frequency of
simple phenomena caused by typing mistakes such as striking the wrong

key on a keyboard. This is done mainly with a simulation of the mis-
takes but some analytic work on this problem is also described. Final-
ly, the efficacy of compilers in detecting the phenomena caused by typing

s é__

]

L 15 16

SECUMTY CLASSIPICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

Page
Prediction of Syntax Errors by Analysis 3
Monte Carlo Experiments to Simulate Transcription
MRS takesh. T e R o] Wi R T ol s e e e 5
CONCHUSHON il ir 1o 00 o e e e o R S e el e ey ren & ar,) % il
REFEYONEES » ot © 3 e o Sl et e e e et e e 15
EigireiCaptionsiis e & v o d e iy Sl e e e e e 16
Fighresl oot i ol e e e L e e R 17
L e ol T o e D, Gk G T G TSR GO G o 18
ﬂ Accession For
| NTIS GRAZI
| DDC TAB
I Unannounced
"' Justification
B
|Distributiens _
ettty cang |

A

Introduction

Transcription mistakes are a common kind of mistake made in tne
construction of programs. Often they occur when a program is tran- p
scribed from a handwritten form into a machine readable form, but they g

A STUDY OF ERRORS CAUSED BY TRANSCRIPTION MISTAKES IN FORTRAN
PROGRAMS "
LLOYD D. FOSDICK

PSR et

also occur when a program is transcribed from the mind of the author

onto paper, or from a flow diagram into a sequence of statements, and
indeed whenever transcription is performed. It is clear that these mis-
takes are inevitable: no matter how much care is taken in the prepara-
tion of a program, no matter how rigorously good principles of design
are followed, and no matter how much effort is invested in proving a
program, the chance of program errors caused by transcription mistakes
cannot be reduced to zero because human systems are not perfect. In-
deed there is a kind of uncertainty principle operating in this do-

main because the act of verifying a program itself involves transcrip-

tion and is therefore vulnerable to these mistakes.
Depending on the care taken, some transcription mistakes will be
discovered by proof-reading and those which remain will be discovered,

if at all, by the phenomena they cause. When a transcription mistake

causes a syntax error it will be discovered easily; or, when a tran-

scription mistake causes an unusual construction to appear, as when

+Supported in part by U.S. Army Grant DAAG29-78-G-0046 and NSF Grant
MCS 77-02194

++Dept. of Computer Science, Univ. of Colorado, Boulder, Colo. 80309

o2

the FORTRAN statement

X=X+1.0
is erroneously transcribed as

Y=X+1.0
and Y is not a pregram variable, it too can be found easily. But when
m is written to fifteen significant figures as

3.1415 93653 58979,
the fact that the seventh digit should be 2 instead of 3 will not be
discovered with comparable ease. Thus we arrive at the question which
occupies us here: What is the nature of the errors caused ' tran-
scription mistakes and what portion of them can be detected easily,
that is at a cost comparable to the cost of compilation.

The simplest and perhaps the most common kind of transcription
mistake, is made with individual characters. The substitution of one
character for another is an examnle. Another kind is the confusion
of identifiers, where one is substituted for another. In a sense this
kind of mistake is more complex since it takes place at the word
level rather than the character level and, probably more importantly,
it involves memory. Still another kind is the omission of expressions,
statements, or even sequences of statements. Such mistakes are easily
caused by a lapse in attention and it is not uncommon that the omitted
text is preceded by a segment similar or identical to the end of the
omitted text. From the point of view of the mental processes involv-
ed this kind of mistake seems almost as simple as the single character
mistake. However, our interests here do not require that we know why

a mistake was made or whether one is more complex than another. Our

interest is in the effects of a mistake.

s A= R

In this paper the focus is on single character mistakes in

FORTRAN programs. The effects of several kinds of single character

mistakes on programs with different characteristics are considered and
we look briefly at the ability of some widely used compilers to detect
the errors caused by these mistakes. A Monte Carlo scheme is used to
generate an ensemble of programs containing errors from simulated tran-
scription mistakes. These errors are then analyzed and classified
according to the ease with which they may be detected. The difficulty
of the problem addressed here almost precludes deriving useful results
by formal analysis. However, in the next section a simple analysis of
this problem to predict the frequency of syntax errors is described and,
as we shall see, it yields results which are in good agreement with
those obtained from Monte Carlo sampling.

The idea of inserting simulated mistakes in programs has been
discussed by others. Weinberg and Gresset [1] used it to study the
error detecting capability of a FORTRAN compiler. It has been ad-
vocated by Gilb [2] as a technique for measuring the number of undetect-

ed errors in a program - adopting the ideas used by biologists for

measuring fish populations, etc. Recently Lipton and

Sayward [3] have suggested it as a mechanism for guiding the selection
of test data. The work reported here, while bearing some relation to
this other work, is different in its objectives from the work of Gilb
and that of Lipton et.al., and is wider in scope than the work of

Weinberg and Gresset.

Prediction of Syntax Errors by Analysis.

e

Since short assignment statements, appear to be the most common

kind of statement appearing in FORTRAN programs [4] we direct our

attention at them. Let a stand for any letter of the alphabet, and
w for any letter or any of the of the ten decimal digits. All legal
three-character assignment statements will have the form

s TR Y
Now count the number of ways in which exactiy one of these character
can be replaced by another FORTRAN character in such a way that a
syntactically correct statement results. For all such
statements but one this number is 60: for the one exception, namely the
statement £ = D, this number is 61 because of the possibility
E =D 2END. There are altogether 47 characters in the FORTRAN char-
acter set [5] hence, ignoring the exception, the probability that sub-
stitution of exactly one of the three characters by another will yield
a syntactically correct statement is 60/138 = 0.43.

We can extend this straightforward analysis to longer statements
but the number of cases that need to be considered grows rapidly and
the computation becomes very tedious. A brief look at four-character
assignment statements is sufficient to illustrate this. Let o stand
for + or -, § for any decimal digit, and a and w as before. There
are nine forms *to be considered: a = aax, a = ad, a = 8§8§, a = oa, a = 08,
a= .8, a =8., an = w, a§ = w. With each form we assign a weight, w,
which is the number of instances of that form; for example,
w(a=aa) = 26°, wla=a8) = 26° x 10, and so forth. We distinguish
between the forms a = aa and a = a8 and do not lump them together as
a = aw because the third character can be changed to a digit or a
decimal point in the second form yielding a syntactically correct
statement (viz. A= A9 A =99, or A = A9 = A 2 .9) but this is not

true for the form a

]

aax. Similar considerations force distinction

——emer

w0 e T W

-~

-

of the nine forms listed above. For each of these cases we compute the

probability, p, that a single character substitution will yield a syn-
tactically correct statement just as for the three-character case;

for example, p(a=aa) = 0.48, p(a=as8) = 0.54. Finally, we compute
the average probability p that a single character substitution wi
yield a syntactically correct statement: this is given by the usual

formula y
i

where the sums extend over the nine cases. The result is p = 0.51.

When this analysis is extended to five-character assignment statements

57 forms are distinguished and similarly analyzed: for this class of
statements the average probability that a single character substitution
will yield a syntactically correct statement is p = 0.56. This analysis
has not been extended to longer assignment statements because the nunber
of forms which need to be distinguished makes the problem almost intract-
able.

On the basis of this approach we can estimate that a single char-
acter substitution in a FORTRAN program has a slightly better than 50%

chance of yielding a program that is syntactically correct. This esti-

mate is crude for a number of reasons which are evident from the approach

we have taken. However, we shall see that it agrees rather well with

the random sampling or Monte Carlo approach described below.

Monte Carlo Experiments to Simulate Transcription Mistakes.

Four common transcription mistakes made in typing are simulated in
these experiments: substitution - the substitution of one character
for another; deletion - the omission of a character; insertion - the

insertion of a character; transposition - the interchange of adjacent

PRI G

I

characters. All of these, except transposition, are single character
mistakes. Two of them, substitution and insertion, require the intro-
duction of a new character into the text and so the question of how
this new character is to be selected arises. In simulating substitution
mistakes we randomly selected a character from among the correct char-
acter's nearest-neighbors on the keyboard of an IBM 026 keypunch. This
rule was used to govern the selection because evidence from experiments
with typists shows that a nearest-neighbor is the most likely character
to be erroneously substituted [6]. However, in order to explore the
effect of another selection rule, a series of experiments were made

in which every character in the FORTRAN character set was made an
equally likely candidate for substitution. As will be seen, use of
this alternate rule had a noticeable effect on the results. Another
obvious choice, but not one considered here, is the character on the
same key but in the alternate shift mode - simulating failure to shift
from alphabetic to numeric or vice versa. For insertion mistakes the
alternate selection rule, all characters equally likely, was the only
rule used.

The character position in the program text where the mistake is
simulated was selected at random, giving each position equal probability
of selection, ignoring COMMENT statements and blank positions. When
the position was selected one instance of each kind of mistake was
simulated. This selection process was repeated fifty times, so for
each program text fifty samples of it were created with one instance
of a particular kind of mistake - thus two hundred and fifty samples
of a particular text altogether: fifty of substitution with nearest-

neighbor character substituted, fifty of substitution with any

g PR e D v W g o e g

character substituted, fifty of deletion, fifty of insertion with any

character substituted, and fifty of transposition. There is a corre’a-
tion among samples arising from the fact that, for a given position
selection, each of the five kinds of mistake appeared at the same place.
This correlation permits a better comparison of the effects of the
different kinds of mistake.

The particular mistakes chosen for consideration here are no doubt
familiar to the reader who may draw on personal experience to decide
their relative likelihood. However, it is worth noting that substitu-
tion and deletion errors together appear to be far more common than
insertion and transposition errors. In a study [7] of mistakes made in
keying cash amounts in a bank central office the following frequencies
were observed: substitution, 62.4%; deletion, 20.7%; insertion, 6.0%;
transposition, 1.5%; other, 9.4%. With specific reference to these
mistakes in FORTRAN text, James wnd Partridge [8] made the following
observations: substitution, 24%; deletion, 58%; insertion, 18%; trans-
position, 0%. These observations are consistent with the observation
that substitution and deletion are simpler actions than insertion and
transposition.

Four program texts, taken from ACM Transactions on Mathematical

Software, were used as subjects:
1. Algorithm 495 - Solution of an Ovefdetennined System of
Linear Equations in the Chebyshev Norm [9];
2. Algorithm 498 - Airy Functions Using Chebyshev Series
Approximations [10];
3. Algorithm 505 - A List Insertion Sort for Keys with Arbitrary
Key Distribution [11];

== ﬂ =

4. Algorithm 513 - Analysis of In-Situ Transposition [12].

There are significant differences between them. In Algorithm 495 a
two-dimensional array and two one dimensional arrays are prominent and
there are no constants except a few small integers. In Algorithm 496
there is no two-dimensional array but there are some small one-din2n-
sional arrays used as tables for real constants: the large number of
real constants, nearly 200, it contains is a distinguishing character-
istic of this algorithm, and it is the only one to contain WRITE and
FORMAT statements. Algorithm 505 has variables and constants of type
integer only and it has a one dimensional array of 57 integer constants
initialized in a DATA statement. Algorithm 513 has a one-dimensional
array of type real, all other variables are of type integer and it

has just a few constants all of type integer. There are some differences
in size: the number of lines, excluding COMMENT lines, in these al-
gorithms is 208, 249, 71, and 81, respectively; the number of statements,
excluding COMMENT statements, is 207, 168, 58, and 81, respectively; the
number of characters, excluding blanks and COMMENT statements, is 2917,
6820, 1364, and 9797 respectively.

After the samples Qere generated each was examined by eye to de-
termine the kind of error caused by the simulated mistake. Four kinds
of error were distinguished.

1. Syntax error: A violation of the language rules determinable

by scanning the altered statement out of context.

2. Semantic error: A violation of the language rules determin-

able at compiie or load time and not included in 1.

3. Anomalous use of a variable: Exactly one appearance of a

variable name in a program unit, or use of a local variable
only in a referencing context, or use of a local variable only

in a defining context.

BT, A € S WA T e

-9

4. Other: Anything not covered by 1, 2, or 3.

The Tanguage rules referred to here are those for ANS FORTRAN 66 [5H].
For a language like ALGOL or PASCAL the errors in the first cateqory
could be defined with respect to the formal grammar used to define them,
but since FORTRAN 66 is defined only informally we are forced to v . i
informal definition of syntax and semantic errors here. However, this
should not cause any serious misunderstanding. The nature of the mis-
takes we are considering is such that they are Tikely to cause an
anomolous use of a variable to appear and most of these are recoanized
in category 3, however, they are included in this category only if

they are determinable without path tracing - i.e., without recognizing
the order in which statements are executed. It will be noted that no
path tracing is required to recognize the fact that a variable name
appears only once in a program unit,and provided it is not used in a
procedure call it is possible to determine whether a local variable is
used only in a referencing context or only in a defining context. These
terms, reference and define, refer to fetching a value from memory and
assigning o value, respectively: x is in a referencing context in

y =x+1and y is in a defining context. Any anomalies which would
require path tracing to detect them fall in categqory 4. A FORTRAN expert
will recognize that category 3 includes certain errors that might have
been placed in category 2 because it is a violation of the language to
use a variable in a referencing context before it has appeared in a de-
fining context and a variable used only in a referencing context is
surely such a violation. Nevertheless it seemed more sensible to in-
clude these in category 3. One point about this classification needs

to be emphasized. The anomalies or errors included in the first three

<90

categories are easy to detect and we should expect that a good compiier
will detect all of them. Those in c&tegory 4 on the other hanc are -uo-
stantially more difficult to detect and while some might be detectable
by techniques of static analysis, others would not. In any case we
would expect to use data flow analysis, testing, or some other 1 ue
to recognize them.

The results of this classification of the 1000 samples are dis-
played in Fig. 1, where the abbreviations used are defined as follows:
SN, substitution mistake - nearest-neighbor substituted; SR, substitution
mistake - any character substituted; DL, deletion mistake; IN, insertion
mistake - any character inserted; TR, transposition mistake. The large

number of real constants in Algorithm 498 explains why the SN, DE, and

TR mistakes yield a high proportion of samples in category 4: real
constants tend to be converted irto real constants. The SN mistakes
cause a lower percentage of syntax errors than SR mistakes because SN
mistakes are more likely to substitute another character of the same

type. The actual probabilities are: pr{<letter> = <letter>} =

Ty

85% (56%), pr{ <digit> P <digit>) = 74% (20%), pr{ < sp. character> 2
<sp. character> 1} = 57% (18%) where the number inside parentheses is

the value for an arbitrary character substitution. When the results

in Fig. 1 for all four algorithms are combined the distribution of errors
over the four categories is: syntax error, 52%: semantic error, 18%;
anomaly, 16%: other 14%. It is interesting to note that the result ob-

tained here for the frequency of syntax errors agrees well with the

result we obtained earlier by analysis.
Qut of the one thousand samples, one hundred and forty fell in
the fourth category representing errors relatively difficult to de-

tect, and of these fifteen were one of the following types:

it s

referencing an undefined variable, two definitions of a variable with-

out an intervening reference, a null statement (e.g. x=x). It is reason-
able to assume that these fifteen could be detected by data flow ana’ysis
or simple matching (for the null statements). Thus it appears that

more than 10% of the errors caused by mistakes would remain until x-
ecution time for their detection, making generous assumptions about de-
tection by static analysis.

It is natural in considerina these results to wonder about the
effectiveness of compilers in detecting these errors. Accordingly the
samples produced by the SN mistakes were submitted for compilation to
four different compilers: MNF, the University of Minnesota FORTRAN com-
piler; FTN, the CDC FORTRAN compiler; FORTH, the IBM FORTRAN H-Tevel
compiler; and WATFIV, the University of Waterloo compiler. In Fig. 2
the errors detected by these compilers are illustrated, with the number
of errors in the first three categories shown for reference (marked EDE).
It is evident that most of these compilers do little more than catch
the syntax errors and some of the semantic errors. No results were ob-
tained for WATFIV on algorithm 498 because of difficulties caused by
the long DATA statements it contained.

Conclusion

These results have three applications. They contribute towards
providing quantitative measures of the reliability of programs, they
provide a base for the comparison of similar phenomena in other lan-
guages, and they provide a target at which the builders of FORTRAN
compilers can aim.

Our ability to provide some quantitative measure for the

reliability of a program is notably weak. In practice ad hoc techniques

i {

based upon what appears to be reasonable are all that we have for judg-
ing a program to be reliable or, to put it another way, for estimating
the number of errors it might contain. The results presented here pro-
vide us with some assistance with this problem. It is reasonable to ‘

i

assume that the density of transcription mistakes which remain in a

program after proof-reading is sufficiently low to treat them as in- f
dependent, non-interfering phenonema: if there is any doubt as to the ﬁ
validity of this assumption one would have Tittle difficulty in test- &
ing it. Therefore by simply multiplying the frequency of mistakes in E
the text after proof-reading by the numbers obtained here we have an i

estimate of the number of mistakes which escaped detection after com-

pilation and static analysis. The first factor can be measured in-

dependently and will certainly depend on the quality of the typists

JERR

and proof-readers, but to show what might be expected from such a cal-
culation we use some data that are available. James and Partridge [8]
in a study of two hundred FORTRAN programs, composed of 20,121 state-
ments altogether, found approximately three mistakes per thousand
statements of which 90% were of the single character type: since we
can assume James and Partridge did not find them all and since it is
unclear precisely when, after proof-reading, they made their observa-
tions, we conclude that the number of mistakes in the programs after
proof-reading was at Teast three per thousand statements. Other data
on keying errors support this., In a study of mistakes made in keying
statistical data by Deming, Tepping, and Geoffrey [13] they found that
the "maximum error rate is one wrong card in one hundred cards punched."
In a study concerned with the design of keyboards Klemmer [14] observed

that "Experienced operators average 56,000 to 83,000 keystrokes per

L

day with 1,600 to 4,300 strokes per residual error" (a "residual error"
is one remaining after detection and correction of the text by the typist):
this translates to 0.25 to 0.6 residual mistakes per 1,000 characters.
Klemmer's data is consistent with that obtained from the Oxford University
Press for operators of typesetting keyboards: superior operators idve an
average error rate of about 0.5 residual mistakes per 1,000 characters.
If we assume an average of about 14 (non-blank) characters per statement,
as is the case for Algorithm 495, then we might expect between 3.5 and
8.4 mistakes per one thousand statements. It is a matter of conjecture
as to how many of these might be caught in proof-reading. If we assume
the worst, that is none caught in proof-reading, and we take the results
obtained from the work reported here which show that about 85% of the
errors caused by typingmistakes could be caught during compilation and static
analysis, we obtain the result that after compilation and static analysis
we could expect between 0.5 and 1.3 mistakes per one thousand statements.
This result would be reduced in proportion with the number of mistakes
caught by proof-reading: but on the other hand we have seen that exist-
ing compilers have a much poorer error detection rate than 85% tending
to increase this result in actual practice. The density of mistakes
remaining in a program when it is put into use, that is to say after
testing, can then be estimated once we have a quantitative measure of
test effectiveness.

There is an intuitive feeling people have to the effect that mis-
takes in programs written in Algol-1ike languages are less likely than
in programs written in FORTRAN. Now so far as the kind of mistakes that

we are treating here is concerned this difference, if it exists, will

-14-

be primarily due to the fact that an Algol-like language will make the
mistake easier to detect: it is not so likely that the language differ-
ence would reduce the frequency of typing mistakes - indeed the larger
alphabet of Algol-like languages could serve to increase the frequency

of typing mistakes. An investigation carried out on programs writ on

in other languages like the one carried out here on programs written
in FORTRAN could resolve this issue and might provide some clues to
language features which enhance, or inhibit, error detection.

Finally, we have seen from the results presented here that there
appears to be considerable room for improvement in existing compilers.
The main area needing improvement is anomaly detection, though it must
be admitted that this is a difficult area to deal with because increas-
ing the reporting of anemalies tends to increase the false alarm rate.
Investigating the error detecting capability of existing FORTRAN coii-
pilers has not been an important theme of this work, however, the few
results we have obtained in this direction suggest that further work
in this area could serve as a stimulus to compiler writers and as a
warning to the careless programmer who likes to leave it to the com-
piler to find the mistakes.

Part of this work was done while I was a visitor with the
Numerical Algorithms Group in Oxford. I thank them for their hospi-
tality and I also thank C. W. Gear who kindly ran my samples on a WATFIV
compiler, and J. M. Boyle who did the same on an IBM FORTRAN compiler.
Finally, I thank Dan Ruegg, Mario Escobar, and Carol Orey of the

University of Colorado who assisted in gathering the data reported here.

O ——

VTS —

TR T - i . g 0

References
1. Weinberg, G. M. and Gresset, G. L. An experiment in automatic
verification of programs. Comm. ACM 6, 10 (Oct. 1963), 610-613.
2. Gilb, T. Software 'ietrics, Winthrop (1977).
3. Lipton, R. J. and Sayward, F. G. Hints on Test Data Selection:
Help for the practicing programmer. Computer (April 1978), 34-41.
4, Knuth, D. E. An empirical study of FORTRAN programs. Software
P. & E. 1,2 (1971), 105-133.
5. ANS FORTRAN (1966). American National Standards Institute, Inc.,
1430 Broadway, New York, N.Y. 10018.
6. Shaffer, L. H. and Hardwick, J. Errors and error detection in
typing. Quart. J. Exp. Psych. 21 (1969), 209-213.
7. Carlson, G. Predicting clerical error. Datamation (Feb. 1963),
34-36.
8. James, E. B. and Partridge, D. P. Tolerance to inaccuracy in
computer programs. Computer J. 19, 3 (Aug. 1976), 207-212.
9. Barrodale, I. and Phillips, C. Algorithm 495 - Solution of an
overdetermined system of linear equations in the Chebyshev norm.
ACM Trans. on Math. Software 1, 3 (Sept. 1975), 264-270.

10. Prince, P. J. Algorithm 498 - Airy functions using Chebyshev
series approximations. ACM Trans. on Math. Software 1, 4 (Dec.
1975), 372-379.

11. Janko, W. Algorithm 505 - A list insertion sort for keys with
arbitrary key distribution. ACM Trans. on Math. Software 2, 2
(June 1976), 204-206.

12. Cate, E. G. and Twiga, D. W. Algorithm 513 - Analysis of in-situ
transposition. ACM Trans. on Math. Software 3, 1 (Mar. 1977),
104-110.

13. Deming, W. E.; Tepping, B. J.; and Geoffrey, L.: Errors in card

%%gching. J. American Statistical Association 37,220 (Dec. 1942),
-536.

Klemmer, E. T. Keyboard entry. Appl. Ergonomics 2, 1 (1971),
2-6.

“16-

Eigure captions.

Figure 1: The effect of five classes of typing mistakes (SN, sub-

stitution - nearest neighbor; SR substitution - any character; DE,

deletion; IN, insertion; TR, transposition) on four algorithms. For
each case the first interval on the bar graph denotes "sy.tax"
errors, the second interval denotes "semantic" errors, the third
interval denotes "anomalous use of a variable," and the fourth in-
terval (shaded) denotes "other" errors. The fourth interval is
shaded to clearly distinguish the errors in this class which are
difficult to detect from those in the other three classes which are

relatively easy to detect.

Figure 2: The effectiveness of four FORTRAN compilers in detecting
errors caused by substitution (nearest neighbor) typing blunders.
The percent of errors detected is shown. Also shown (EDE) is the

percent of errors which are easy to detect, namely those in the three

classes: 1, syntax; 2, semantic; 3, anomalous use of a variable,

A 495

A 498

A 505

A 513

Figure 1

-18-

O 25 50 75 100%
T i i) -

—

EDE 1 I

MNF

A 495 FTN
FORTH
WATFIV

EDE| 1 |2]3
MNF
FTN
FORTH

R o

A 498

S —— — s

epE[1 [273

MNF

A 505 FTN
FORTH
WATFIV

e e e e ey e

EDE 1 23

MNF

A 513 FTN
FORTH
WATFIV

Figure 2

- e o ST e Y RN ¢ A—

